WATER DISINFECTION
IN COMMERCIAL BUILDINGS
APPLICATION GUIDE
Foreword

The health and livelihood of man basically depends on the availability of safe water. Increasing water demand from a growing population and urbanisation calls for better management of water resources. Not only should water resources be protected, but the water distribution systems should also be safe and of high quality.

Domestic water or potable water is defined as water of such high quality that it can be consumed or used for domestic purposes, without risk of immediate or long term harm. Unfortunately, this is not always the case. Even though a water resource is managed well and safely distributed in a utility network, it often turns out to be infected with microorganisms by the time the consumer turns on the tap, or it becomes infected via equipment where water is used. In short, the internal water systems inside buildings often fail to prevent bacteria from multiplying in tanks, pipes and in water handling equipment where conditions favour their growth.

When distributing and handling water for various purposes such as in cooling towers, in pools and spas or for domestic purposes, many safety measures should be taken into consideration, and legislation concerning the prevention and combating of disease should be followed. This is, however, not a simple task and many building owners or building operators fail to live up to requirements, with fatal consequences for their customers, guests, clients or patients. And even if legislation is followed, the building owner sometimes ends up with fatalities on his hands and a high degree of economic risk.

This application guide describes the measures to be taken in order to ensure that water systems in commercial and residential buildings are kept safe. It describes what Legionella is and the sources of Legionella in a commercial building, and it shows how these sources are treated with the best possible effect.

I wish you safe reading.

Jens Nørgaard

Application Manager with Grundfos Commercial Building Services
Introduction...4
What is Legionella?...4
What are the effects of Legionella?..5
Where is Legionella found?..6
Sources of Legionella in commercial buildings..8
 Cold water systems...8
 Hot water systems...9
 Evaporative cooling applications...10
 Spa baths...15
 Swimming pools...16
 Decorative water fountains..17
 Misting devices..17
Methods of water treatment..18
 Thermal treatment...18
 Chlorination...19
 Disinfection with chlorine gas..20
 Electrolytic chlorine generation..21
 Dosing of sodium hypochlorite solution..22
 UV-radiation...23
 Filtration...24
 Ozone..25
 Chlorine dioxide..27
Obligations and responsibilities..30
INTRODUCTION

If we are to stay healthy, it is essential that the water we drink and shower in is clean. One of the most widespread health hazards in any drinking water installation is Legionella pneumophila – an exceptionally resistant type of bacteria.

Legionella is a mesophile bacterium and it thrives in any system where there is water and where the temperature favours its growth. These conditions are often present in evaporative cooling systems, spas, swimming pools and domestic water systems with low flow rates, areas of stagnation or badly serviced water tanks. A slimy layer of biofilm within pipes and tanks creates a protective habitat in which the bacteria breed and thrive.

Water disinfection is of supreme importance in all buildings with drinking water services and most particularly in any application where water mist is sprayed into the air.

WHAT IS LEGIONELLA?

Legionella pneumophila – the bacterium associated with over 90% of all cases of Legionnaires’ disease – is a bar-shaped bacterium of the Legionellaceae family.

Water for domestic use in commercial buildings is very often infected with Legionella pneumophila and special measures have to be taken in order to combat it, because it, for the most part, is resistant to biocides.
Legionella can be transferred to the human respiratory system in any water aerosol with a droplet size of between 3 and 5 μm and aerosols of this size are easily created in environments such as showers and cooling towers. Even a relatively low concentration of bacteria in the aerosols is sufficient to infect a healthy person. Following an incubation period of 2-10 days, the Legionella pneumophila generates a special form of pneumonia (legionellosis), which can be accompanied by Pontiac fever.

Estimates from the German Federal Statistical Office indicate that each year in Germany 25,000 to 30,000 people contract legionellosis. For people with weakened immune systems such as the elderly, sick and those who smoke, the illness can be fatal if it is not treated within the first four days.

- The legionellosis disease rate is up to 5% of those inhaling infected aerosols
- The death rate is up to 30% of those who succumb to legionellosis.

The Legionella bacteria may cause Legionnaires’ disease which develops in the human lungs.
WHERE IS LEGIONELLA FOUND?

Small quantities of Legionella are found naturally in the microflora of rivers, lakes and ground water. These low concentrations are not generally associated with disease, but when favourable growth conditions are created, the bacteria can reach hazardous concentrations. Legionella travels into the water systems of buildings via intakes from both the surface and the drinking water network. Generally, conditions in hot water systems such as low flow rate, low temperatures, stagnant water and badly serviced water tanks offer optimum conditions for the growth of Legionella. Legionella reproduces abundantly in a temperature range of between 25 and 46 °C and lives in biofilms where it is shielded against most chemical disinfectants and most disinfection technologies.

On the inside of piping, biofilm may affect the transport and quality of water. The biofilm takes up space, reducing the effective diameter of the pipe, and increases pipe friction. Both factors increase system resistance, which results in increased power consumption and decreased flow.

Biofilm begins to develop when free-floating micro-organisms attach to a surface. If they are not immediately separated from the surface, they can anchor more permanently. The first colonists facilitate the arrival of other cells and begin to build the matrix that holds the biofilm together. Once colonisation has begun, the biofilm grows through a combination of cell division and recruitment of new cells.

If anaerobic conditions develop in the biofilm, certain micro-organisms produce foul smelling gasses, such as methane and hydrogen sulphide, as a by-product of their anaerobic respiration. This may cause odour and health problems in connection with the sewer network and at the wastewater treatment plant.

Biofilm
Biofilm consists mainly of mixed colonies of microorganisms (bacteria, algae, fungi, protozoans) that are connected to one another and attached to a single substrate. They are integrated fully or partially in a polymeric organic mass (slime) produced by the organisms. This gel-like film offers the ideal growth conditions and the ultimate protection for the bacteria and attaches itself to all kinds of surfaces in contact with water such as tanks, pipes, pumps, etc.
Legionella occurs widespread in nature
SOURCES OF LEGIONELLA IN COMMERCIAL BUILDINGS

There are a number of applications in any commercial building from which the Legionella bacteria can spread. Here are some potential sources of risk:

Cold water systems

In large and tall buildings, cold water frequently heats up to temperatures that create ideal growth conditions for several kinds of bacteria.

At the water’s main point of entrance into the building, the cold water usually has a temperature well under 25 °C. Beyond that point, the cold water temperature starts to increase owing to high surrounding temperatures. If the water ends its flow in an uninsulated roof top tank, a further increase in water temperature is likely to occur. After some hours in a roof top tank, the water re-enters the building for tapping. Not only will the consumer never experience genuinely cold water, the cold water is also likely to contain high levels of bacteria.

There is an increased risk of bacteria growth in systems where:

- The cold water pipe is used for hot water recirculation. The cold water pipe will heat up and there will be a severe risk of bacteria reproduction in the pipe.
- Cold and hot water pipes are co-insulated. Heat will travel from the hot pipe to the cold pipe.
- Roof top tanks and break tanks are used. If the use of tanks cannot be avoided,
they should be located inside the building and should be sized with the lowest possible retention time.

• There are water tanks in organic material - the tank itself will serve as food source for bacteria.
• Pipes are oversized. Stagnant water increases the risk of bacteria growth.
• Pipe material is prone to corrosion. Corrosion products is a good food source for bacteria.
• There are dead-legs where there is no water flow.

Normally, mains water contains only small quantities of Legionella, but it should always be assumed that Legionella bacteria are present in mains water. Hence the designer should always design both cold and hot water systems to avoid growth of bacteria and avoid conditions where this might occur.

Hot water systems

All hot water systems are at risk of infection but there is an increased risk of growth in systems where warm water remains more or less stagnant due to low consumption and where the water temperature is between 25 °C and 46 °C. This temperature range is ”ideal” for bacteria growth as Legionella is a mesophile bacterium, which breeds in exactly that temperature range. Poorly maintained systems with sediment, corroded material, scale and sludge that provides food sources for the bacteria are also at risk.
Hot water tanks
In order to reduce the risk of microbacterial growth in hot water systems, hot water tanks should be carefully designed, monitored and maintained in accordance with best practices and legislation:

- The temperature in hot water tanks should be 60 °C, whilst temperatures in the taps and circulation pipes should be no less than 55 °C. If the temperature exceeds 60 °C, unwanted scaling will occur in both tanks and pipes.
- Oversizing of tanks and pipes will result in stagnant water.
- Hot water recirculation pipes should always be conducted as a separate pipe. The cold water pipe should not be used for recirculation.
- Hot water exchangers should be preferred to tanks as there is no risk of stagnant water in an exchanger or so-called instantaneous hot water heaters.
- Dead ends with no flow should be avoided.
- Insulation should be applied to both tanks and pipes in order to keep temperatures up.
- All pipes should be insulated separately. Otherwise heat will travel from hot to cold water pipes.
- Use of plastic pipes should be limited as they are suspected of giving off organic substances which might serve as nutrition for microorganisms.
- Use only non-corrosive, high-quality and approved pipe and tank materials.

Evaporative cooling applications
Cooling towers and evaporative condensers are used to dissipate unwanted heat to the atmosphere through water evaporation. Water is sprayed into the cooling tower through spray nozzles and tiny airborne droplets are formed.
While falling through the tower, some of the water evaporates but some droplets, known as drift, are carried out of the tower by the airstream produced by the fans. Legionella grows easily in the water and is easily dispersed together with the drift.

Cooling towers are a common way of rejecting heat in a cooling process. The heat is dissipated to the atmosphere by evaporation of the circulating water in the cooling tower. Here (see Fig. A), the circulating water in the cooling refrigerant condenser is located outside the cooling tower, usually at the chiller or in the proximity of it. Having gained energy in the condenser, water from the pond at the base of the cooling tower is circulated in an open loop and distributed over the fill pack. The water runs slowly through the fill pack whilst it is cooled by the upward airstream and finally it drains into the pond. In the process, tiny droplets are formed which are easily carried out of the tower as drift. To avoid this from happening, the tower is supplied with drift eliminators that contract some of the drift.

Evaporative condensers are a less common way of rejecting heat in a cooling process. Here (see Fig. B), the refrigerant condenser is installed inside the tower. Water from the pond is circulated in an open loop and distributed directly over the refrigerant filled condenser where it picks up energy from the condenser coil and evaporates. Again, drift eliminators are used to reduce the amount of drift to the surroundings.

There are two types of water distribution principles for distributing water over the fill pack or condenser.

1. Spray type nozzles. With this arrangement, many droplets may be created which potentially can be carried away.
2. Trough and gutter. With this arrangement, far fewer droplets are formed, which reduces drift. However, both trough and gutter are sensitive to creation of sediment and algae growth.

Drift eliminators are essential to any type of evaporative cooling tower or condenser with any kind of water distribution system. The drift eliminators consist of a complex system of baffles on which the droplets are caught before leaving the tower. The baffle system allows the air to smoothly flow through. Eliminators are able to reduce the spray leaving the tower to an amount corresponding to approximately 0.01% of the circulating water flow. Example: If the water flow is 100 m³/h the amount of spray will be 0.01% m³/h or 10 l/h.

Cooling tower water is subject to microbacterial growth for several reasons. First of all the water temperature is of major importance. Water between 25 and 46 °C favours growth of Legionella and this temperature is not uncommon in evaporative cooling applications. Moreover, microbacterial growth can be accelerated by the presence of deposits in the system such as sediment, organic matter, scale, and corroded materials from which many bacteria can live and breed. Biofilm in evaporative cooling systems is a common problem, which has to be dealt with. Biofilm is a breeding ground for not only Legionella but many kinds of bacteria.
Water treatment in evaporative cooling applications

In order to keep control of microbacterial growth, water treatment must contain the following elements:
• Corrosion Control
• Water hardness control
• Dissolved solids control
• Filtration
• Microbacterial control

Corrosion control

Some components of an evaporative cooling system are susceptible to corrosion. Because the water circuit is an open system, the water contains a high volume of air which is one of the preconditions for corrosion. Corrosion may be accelerated by other mechanisms too, such as scale deposits, pH, sediment and corrosion materials.

Water hardness control

To avoid build up of scale and sediment formation, make-up water will have to have a certain softness. If groundwater is used for make-up water it might have a natural and sufficient softness. Otherwise, it will have to be treated with chemical softeners before it is supplied to the tower’s water circuit.

Cooling tower water can also be supplied from other sources – for example via condensate from a steam system or condensate from the building’s air-conditioning system. Dehumidification of moist outside air can be a major source of demineralized water.

Dissolved solids control

When water evaporates in order to reject heat, the impurities are left behind in the circulating water. The result is that the remaining
water becomes increasingly corrosive and more inclined to form scale deposits. To avoid this undesired effect it is necessary to bleed a certain amount of water to the sewer system and replace it with treated make-up water. The evaporative heat rejection rate is not constant as it depends on several factors such as outside air temperature, outside air humidity and internal cooling load. In order to save water, blow-down and make-up water rate should be controlled by the actual and fluctuating demand. The water’s electrical conductivity is normally used as an indicator for blow-down and make-up water need. Water use for evaporation and water blow-down can be huge. Water for evaporation depends on the cooling load and it can easily mount up to 2 m³/h per MW cooling load.

Filtration
High content of particles in evaporation water may affect the effectiveness of water treatment chemicals used for descaling, corrosion inhibition etc. If the tower is located in areas with high particulate load such as deserts or heavy industrial areas, strainers should be fitted to the system. Other particulate pollutants are leaves, insects, pollen, seeds and bird droppings.

Microbacterial control
Water treatment can be done with chemical dosing or with non-chemical means. Continuous dosing of chemicals has proven to be efficient to combat bacteria in evaporative cooling applications. Water treatment with continuous dosing offers the opportunity to add the chemicals according to the actual need. This ensures an at all times appropriate chemical content in the evaporation water, which reduces the risk of over/under dosing. Over/under dosing increases the general risk of corrosion and reduces the disinfection action. All water treatment should
always be supported by monitoring and evidence of the system’s effectiveness to control Legionella and other microorganisms.

Common disinfection principles and chemicals to be used:
- Chlorine (Hypochlorite solution)
- Chlorine dioxide
- Ozone
- UV radiation

Spa baths

In spa baths there is increased risk of bacterial growth because virtually all pre-conditions are present. First of all the water in spas is usually maintained at 32 to 35 °C, which is an optimum temperature for the mesophile Legionella bacterium to grow. The relatively limited volume of water and high user load result in water with a high content of dirt, dead skin cells and other organic matter, and combined with raised temperature, agitated and aerated water it makes for ideal conditions for all kinds of microorganisms. Bubbles imploding on the water surface create aerosols which are readily inhaled by the spa users. Also the ”hidden” air and water circulation pipes provide a large surface area for the biofilm and bacteria to grow on. Biofilm in these pipes can therefore not be removed.

Spa baths should be monitored, maintained and cleansed daily.

Although chemical disinfectants are used for disinfection the following manual procedures have to be performed on a daily basis:
- Check of chemical dosing operation
- Cleansing of spa, overflows and spa surroundings
- Emptying of water filters
- pH-value and water clarity check
Common disinfection principles and chemicals to be used in spa baths:
- Chlorine/Hypochlorite
- Chlorine dioxide
- Ozone

Recommended free chlorine level in spa baths should be 3 – 5 mg/l. Sand filters are a very important component to secure clean water in spas. The sand filter ensures that particles and organic matter such as dead skin cells and human hair are filtered away. Flocking agents have to be dosed before the sand filter. Flocculating agents are a process where small suspended particles create flocs by the addition of a clarifying agent. In this way the dead skin cells, which are collided in flocs, can be removed. To ensure high efficiency, sand filters will have to be back-flushed.

Swimming pools

Bacterial growth in swimming pools has to be addressed as well as in spa baths. However, swimming pools are characterized by having considerably lower organic load because pools are designed for much fewer persons per volume of water. A swimming pool is designed for swimming whereas spas are designed for people sitting next to each other. Furthermore, swimming pools do not include air and water jets. The water is not agitated and the aerosol creation is reduced.

Swimming pool disinfection

Sand filters as well as chemical treatment are employed in swimming pools. There are a variety of disinfection principles and chemicals to be used either combined or separately:
- Chlorine/Hypochlorite
- Chlorine dioxide
- Ozone
- UV radiation
Decorative water fountains

Water fountains in places such as shopping malls, airports, hotels and fun parks are subject to bacteria growth. Water is sprayed into the air, airborne droplets are formed and then easily inhaled into the lungs. Fountain water is the same temperature as the surrounding air and at that temperature, Legionella and other bacteria grow readily in the water and biofilm.

Disinfection principles and chemicals to be used in fountains:
- Chlorine (Hypochlorite solution)
- Chlorine dioxide
- Ozone
- UV

Misting devices

Misting devices spray water into the air in retail outlets, and are used to keep fruits and vegetables fresh for as long as possible. This procedure is not only able to reduce moisture- and weight loss of fruit and vegetables, it also promotes rehydration. Re-hydration enables fresh produce to regain the moisture already lost since harvest and therefore extends fruit and vegetable life dramatically. Infected spray would be a major threat to the customers as it is easily inhaled into the lungs.

Moisturising water should be of drinking water quality, and should be maintained at a temperature of under 20 °C and always be disinfected to reduce the risk of bacteria growth. Pipes and tanks should be designed to minimise the risk of stagnant water and to minimize thermal gain.
METHODS OF WATER TREATMENT

Thermal treatment

One of the most commonly used methods to combat Legionella is thermal pasteurisation. Legionella begins to die at temperatures above 56 °C, which makes it possible to combat the bacterium by heating the infected water system. A temperature of approximately 70 °C must be reached and maintained throughout the entire piping system over a period of around 10 minutes. However, this can seldomly be achieved in typical installations because the water cools down as it reaches the water outlets.

There are relatively few advantages to thermal treatment:

- This procedure does not affect the smell and taste of the water.
- It is not sensitive to the pH-value of the water.
- The procedure is well known and easily understandable.
- There is no addition of biocides to the water.

On the other hand, there are many disadvantages to thermal treatment:

- There is acute risk of scalding if the water outlets are opened during pasteurisation.
- Biofilm is left unaffected, which means that germs quickly build up again between treatment cycles. Thus, there is no long-term effect of the pasteurisation.
- Dead-ends are not treated at all.
- An advanced tap-opening process must be implemented to make sure that all sections of the water system are treated. Needless to say that in large residential and commercial water systems, it is impossible to secure the
flushing of all pipes.
• The consequence of heating up large water systems is very high energy consumption.
• The desired temperature of 70 °C can never be achieved in the whole system, because the water cools down before it reaches the water taps.
• This procedure produces increased lime scale deposits in pipes and tanks. This might damage systems and clog water taps.
• Thermal expansion in pipes can cause irreparable damage and leakages in older installations. The overarching conclusion is that thermal treatment is an inefficient and expensive procedure.

Chlorination

Chlorine has been used to treat drinking water for more than 75 years. Thanks to its high safety standards, it is the most widely used disinfectant worldwide. It is a highly effective oxidant and disinfectant. It sterilises rapidly and efficiently, more or less completely destroying nearly all microorganisms, even at low concentrations that are harmless to humans.

In practice, three chlorine disinfection processes are used:
• Disinfection with chlorine gas. This is the most widely used process.
• Electrolytic chlorine generation.
• Dosing of liquid sodium or calcium hypochlorite solution. Liquid hypochlorite solution is primarily suited for cases where smaller quantities of water need to be treated.

When chlorine gas, electrolytically generated hypochlorite or a hypochlorite solution is dosed into water, hypochlorous acid (HClO) is formed. HClO is the active disinfectant. The disinfectant penetrates and degrades the cell membranes.
and disrupts the metabolism of the microorganisms. Of particular benefit is chlorine’s relatively long residual effect. Chlorine is used as a disinfectant in a wide range of applications that stretch far beyond drinking water treatment. It is essential for disinfecting swimming baths worldwide and is often a statutory requirement.

Chlorination characteristics:
- The treated water smells and tastes of chlorine.
- The procedure is sensitive to the pH-value of the water.
- Long-term effect on bacteria is limited.
- Biofilm in hot water tanks and pipes is left unaffected.

Disinfection with chlorine gas
Gas dosing systems from Grundfos work according to the proven full-vacuum principle. In case of a pipe leakage, the vacuum system ensures that chlorine gas is kept within the pipe system. This can be used to regulate the addition of gaseous chlorine reliably and precisely. Typically, a full-vacuum system consists of a number of components: a dosing regulator, vacuum regulators, a chlorine gas absorber and a gas injector. Chlorine gas disinfection is common in swimming pool applications.

When gaseous chlorine is added to water the following hydrolysis reaction takes place:

\[\text{Cl}_2 + \text{H}_2\text{O} \leftrightarrow \text{HCl} + \text{HClO} \]

The Grundfos chlorine gas dosing range:
- Compact devices with a single point gas injector for direct installation on chlorine gas cylinders or header lines.
- Fully automated systems with PLC controller, integrated sensors and multiple injection points.

Graph showing how the disinfection efficiency is dependant of the pH-value. The blue area shows the concentration of the active disinfectant, HClO. pH-values below 3 or above 7.5, will reduce the disinfection effect significantly.
Electrolytic chlorine generation

With electrolysis, chlorine is produced directly from a solution of common salt using electricity. There are no significant by-products from this procedure.

The following reactions take place in the electrolytic cell:

\[2 \text{NaCl} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{Cl}_2 + \text{H}_2 \]

The chlorine produced reacts immediately with the caustic soda solution also formed, resulting in a hypochlorite solution:

\[\text{Cl}_2 + 2 \text{NaOH} \rightarrow \text{NaCl} + \text{NaClO} + \text{H}_2\text{O} \]

The product solution generated has a pH value between 8 and 8.5, and a chlorine concentration of less than 8 g/l. It has a very long half-life, which makes it ideal for tank storage. When the product solution is dosed into the water, the sodium hypochlorite reacts with the water and the active disinfectant HClO is formed.

\[\text{NaClO} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{HClO} \]

An electrochlorination system is characterised by low operating costs, as there are no expenses for safe transportation and storage of chlorine gas. Common salt is the only raw material required.

The Grundfos electrochlorination units range comprises complete plug and dose systems as well as systems built according to the customer’s specifications.

On-site generation of chlorine with a Grundfos system is performed cost-effectively, reliably and with high operating convenience. Peak demands are handled by using the product tank as buffer storage.
Dosing of sodium hypochlorite solution

Sodium hypochlorite (NaClO) is a clear, slightly yellowish solution with a characteristic odour. As a bleaching agent for domestic use, it usually contains 5% sodium hypochlorite. Hypochlorite for commercial use is more concentrated. It contains a concentration of 10-15% sodium hypochlorite with a pH of around 13, which makes it very corrosive.

Concentrated sodium hypochlorite is an unstable compound, as it evaporates at a rate of 0.75 gram active chlorine per day from a one litre solution. The degrading process accelerates when sodium hypochlorite is mixed with acids, certain metals or when it is exposed to sunlight or high temperatures. Sodium hypochlorite is a strong oxidant.

These characteristics must be kept in mind during transport, storage and use of sodium hypochlorite.

When sodium hypochlorite is added to water the pH-value of the water increases, due to the creation of lye (sodium hydroxide, NaOH) in the solution. When sodium hypochlorite is used for disinfection in water, hydrochloric acid (HCl) or sulphuric acid (H₂SO₄) is usually added to adjust the pH-value.

The active disinfectant HClO is created when the hypochlorite solution is dosed to the water that has to be disinfected.

\[
\text{NaClO} + \text{H}_2\text{O} \leftrightarrow \text{NaOH} + \text{HClO}
\]

Sodium hypochlorite as a disinfectant has the following advantages:

- Dosing of sodium hypochlorite is a simple and efficient process.
- Dosing of sodium hypochlorite is a safer solution compared to chlorine gas handling.
Sodium hypochlorite as a disinfectant has the following disadvantages:

- Concentrated sodium hypochlorite is a corrosive substance; hence it should be handled with care.
- High degradation rate during storage. After 2-3 months of storage the sodium hypochlorite disinfection effect will be reduced by 50%.

Water treatment with sodium hypochlorite requires accurate and safe dosing solutions.

The Grundfos digital dosing pumps offer reliable, cost-effective and high-precision dosing processes for all commercial applications. Grundfos digital dosing pumps are independent from regional voltages. Integrated flow control function allows dosing of degassing liquids without interruption of the process.

UV radiation

UV functions with the use of ultraviolet rays. Infected water that should be disinfected is radiated with ultra-violet rays with a wavelength of 254 nm. The UV rays penetrate the cell wall and damage the genetic information of the bacteria and viruses, disrupting their reproductive systems. A UV-bulb is used for radiation of the water. UV units in domestic water systems can be installed at the water intake to the building, in circulation pipes or at the point of use.

Advantages:

- UV-treatment is effective against free bacteria that are exposed to the UV-rays
- The procedure does not affect smell and taste of the water
- No chemicals are added to the water
- UV-treatment is not sensitive to the pH-value of the water
Disadvantages:
- This method is regarded as a “gatekeeper” – only free bacteria that actually float by the UV-bulb and are exposed to the UV-rays are killed. There is no long-term effect on bacteria populations in the water system.
- Biofilm in the piping network – the basis for the multiplication of Legionella – is unaffected by this procedure and UV-radiation has no effect on bacteria that remains in the biofilm
- The UV-bulb is very sensitive to particles and scale in the water. The addition of carbonic acid, for example, is necessary to avoid scale precipitation
- The ultraviolet radiation system often includes an activated carbon filter to remove metals and particulates.

Filtration
Ultra- or microfiltration is commonly used for domestic water supply. Membrane systems filter bacteria, viruses, suspended particles and other unwanted elements from the water. These devices are usually installed at the water intake to the building or in circulation systems.

Advantages:
- Filtration is effective against free bacteria floating in the water
- Filtration does not affect smell and taste of the water
- Not sensitive to pH-value of the water
- No chemicals are added

Disadvantages:
- This method is regarded as a “gatekeeper”. Only free bacteria floating in the water can be removed. There is no long term effect on bacteria populations in the water system.
Molecular structure of ozone, O₃

• Biofilm in the pipes and water tanks – the basis for the multiplication of Legionella – is unaffected by this procedure.
• In case of malfunction, a large microbiological population can grow in the membranes.

Ozone

Ozone is a sanitizer derived from the surrounding air which can be dissolved in water for the purposes of disinfection. It is produced by passing oxygen through a high intensity electrical field. Using this method, the oxygen gas is changed to ozone gas - a molecule with three oxygen atoms (O₃). Once generated, ozone must be used immediately as it breaks down rapidly. The half-life of ozone is less than one hour in best case. Ozone is the most effective oxidant which is used in disinfection processes but therefore non-selective which means that it reacts with all materials which can be oxidized. Not only organic compounds in the water but also pipe sealings and pipe material.

Small ozone generators are often used in cooling water circuits or fountain applications. In pool water applications ozone is used as additional oxidizer to reduce undesired by-products from the water.

Advantages:
• Ozone is effective against free bacteria floating in the water
• Smell and taste of the water is not affected
• Not sensitive to pH-value of the water

Disadvantages:
• This method is also regarded as only a “gatekeeper”, because of the breakdown time. As the retention time is very short there is no residual effect and no long-term
effect on bacteria populations in the water system.

- Biofilm in the piping network – the basis for the multiplication of Legionella – is unaffected by this procedure and ozone has no effect on bacteria in biofilm.

Comparison of disinfection effect between chlorine and chlorine dioxide
Chlorine dioxide

Chlorine dioxide is an oxide of chlorine with two oxygen atoms (ClO₂) with a completely different behaviour compared to hypochlorite or chlorine gas. It does not react with water, but dissolves physically. Chlorine dioxide kills microorganisms in the water by way of irreversible oxidative destruction of the transport proteins in the living cells.

Because of its high redox potential, chlorine dioxide has a much more powerful disinfecting action against all kinds of germs and contaminants such as viruses, bacteria, fungi and algae, than other biocides. The oxidation potential is higher than with e.g. chlorine, which means that significantly fewer chemicals are required. Microorganisms that are resistant to chlorine, for example Legionella, can be killed completely by chlorine dioxide.

The significant advantage of chlorine dioxide in relation to chlorine or hypochlorite is the gradual effect it has on degrading biofilm at low doses. A chlorine dioxide concentration of 1 ppm will kill virtually all free-flowing Legionella and inactivate most of the bacteria in the biofilm within one day. A significant reduction of biofilm can be observed after several days. Furthermore, the disinfecting action of chlorine dioxide is virtually independent of the pH value, meaning that it can also be used without any problems in alkaline environments.

There are many advantages to chlorine dioxide:
- Chlorine dioxide removes biofilm effectively in the entire water system, ensuring that the basis for the multiplication of Legionella is removed.
- Effective against free bacteria floating in the water.
This chart illustrates how the typical solutions for disinfection perform on a number of parameters. The chlorine dioxide solution of the Oxiperm Pro system is superior to the rest.

<table>
<thead>
<tr>
<th>Disinfection principle</th>
<th>Removes biofilm</th>
<th>Effective against bacteria in biofilm</th>
<th>Effective against free bacteria</th>
<th>Affects water taste and smell</th>
<th>Sensitive to water-pH</th>
<th>Life cycle cost</th>
<th>User scalding risk</th>
<th>Long-term effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal treatment</td>
<td>No</td>
<td>Low</td>
<td>Mid</td>
<td>No</td>
<td>No</td>
<td>High</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>UV radiation</td>
<td>No</td>
<td>No</td>
<td>High</td>
<td>No</td>
<td>No</td>
<td>Mid</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Filtration</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Mid</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chlorination (hypochlorite sol.)</td>
<td>No</td>
<td>Mid</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
<td>Mid</td>
</tr>
<tr>
<td>Ozone</td>
<td>No</td>
<td>No</td>
<td>High</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>Yes</td>
<td>High</td>
<td>High</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>No</td>
<td>High</td>
</tr>
</tbody>
</table>

Performance of disinfection technologies and disinfectants on a number of parameters
• Effective against bacteria and biofilm in dead-legs, as the chlorine dioxide can dilute into dead-legs with no water flow.
• Extensive residual effect. If there are periods with very low or no flow, the chlorine dioxide stays in the water and protects the system for up to a week.
• Chlorine dioxide does not affect the smell and taste of the water.
• Chlorine dioxide is not sensitive to the pH-value of the water.

The only disadvantage concerning this procedure is the risk of handling the chemicals. If hydrogenic acid (HCl) and natriumhypochlorite (NaClO₂) are mixed uncontrolled, chlorine dioxide gases are formed.

Grundfos chlorine dioxide generators are designed for use in commercial building applications. A safe and patented process ensures reliable generation of ClO₂. The compact design with integrated controller, product storage tank and digital dosing pump for the product solution allows installation in areas with limited space. These units are mainly used in treatment of incoming drinking water, circulating hot water or in cooling water cycles as well as in decorative fountains.
WHICH OBLIGATIONS AND RESPONSIBILITIES CONCERN THE OPERATION OF WATER INSTALLATIONS?

Almost every country in the world has legislation regarding the prevention and combating of infectious diseases. The European Drinking Water Guideline says that:

Water intended for human consumption must be supplied in such a way that its consumption or use will not adversely affect human health, especially through means of pathogens.

This means that owners or operators of water systems in public, commercial, or residential buildings have full responsibility for the quality of the water systems right up to the water outlet. Water utility companies are responsible for the quality of water until the water delivery point.

In most countries public health authorities are required to inspect water supply installations that distribute water for the general public. Commercial buildings must be inspected and samples have to be taken. The health authority will usually commission a laboratory to test the water samples. If specified limit values are exceeded, health authorities are normally authorised to close down building water supply installations. The quality of drinking water in private buildings is inspected on request, or if there are indications of a problem.

In the case that water tests show biological contamination, measures have to be taken. Appropriate measures must always be confirmed by country-specific regulations or legislatives.
Copyright 2012 GRUNDFOS Holding A/S. All rights reserved.

Copyright law and international treaties protect this material. No part of this material may be reproduced in any form or by any means without prior written permission from GRUNDFOS Holding A/S.

All reasonable care has been taken to ensure the accuracy of the content of this material. However, GRUNDFOS shall not be held liable for any losses whether direct or indirect, incidental or consequential arising out of the use of or reliance upon on any content of this material.
VISIT US ONLINE

For more information on Grundfos Commercial Building Services and our services, please visit www.thinkingbuildings.com

Here, you can read all about our products or use our online tools, including the timesaving Quick Pump Selection tool.